HPatches: A benchmark and evaluation of handcrafted and learned local descriptors

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Krystian Mikolajczyk, Andrea Vedaldi, Vassileios Balntas, Karel Lenc
Journal/Conference Name CVPR 2017 7
Paper Category
Paper Abstract In this paper, we propose a novel benchmark for evaluating local image descriptors. We demonstrate that the existing datasets and evaluation protocols do not specify unambiguously all aspects of evaluation, leading to ambiguities and inconsistencies in results reported in the literature. Furthermore, these datasets are nearly saturated due to the recent improvements in local descriptors obtained by learning them from large annotated datasets. Therefore, we introduce a new large dataset suitable for training and testing modern descriptors, together with strictly defined evaluation protocols in several tasks such as matching, retrieval and classification. This allows for more realistic, and thus more reliable comparisons in different application scenarios. We evaluate the performance of several state-of-the-art descriptors and analyse their properties. We show that a simple normalisation of traditional hand-crafted descriptors can boost their performance to the level of deep learning based descriptors within a realistic benchmarks evaluation.
Date of publication 2017
Code Programming Language Unspecified
Comment

Copyright Researcher 2022