Human Tracking by Multiple Kernel Boosting with Locality Affinity Constraints

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Fan Yang, Huchuan Lu, Yen-Wei Chen
Journal/Conference Name ACCV
Paper Category
Paper Abstract In this paper, we incorporate the concept of Multiple Kernel Learning (MKL) algorithm, which is used in object categorization, into human tracking field. For efficiency, we devise an algorithm called Multiple Kernel Boosting (MKB), instead of directly adopting MKL. MKB aims to find an optimal combination of many single kernel SVMs focusing on different features and kernels by boosting technique. Besides, we apply Locality Affinity Constraints (LAC) to each selected SVM. LAC is computed from the distribution of support vectors of respective SVM, recording the underlying locality of training data. An update scheme to reselect good SVMs, adjust their weights and recalculate LAC is also included. Experiments on standard and our own testing sequences show that our MKB tracking outperforms some other state-of-the-art algorithms in handling various conditions.
Date of publication 2010
Code Programming Language MATLAB
Comment

Copyright Researcher 2021