Hybrid precoding-based millimeter-wave massive MIMO-NOMA with simultaneous wireless information and power transfer

View Researcher II's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Linglong Dai, Bichai Wang, Mugen Peng, Shanzhi Chen
Journal/Conference Name IEEE Journal on Selected Areas in Communications
Paper Category
Paper Abstract Non-orthogonal multiple access (NOMA) has been recently considered in millimeter-wave (mmWave) massive MIMO systems to further enhance the spectrum efficiency. In addition, simultaneous wireless information and power transfer (SWIPT) is a promising solution to maximize the energy efficiency. In this paper, for the first time, we investigate the integration of SWIPT in mmWave massive MIMO-NOMA systems. As mmWave massive MIMO will likely use hybrid precoding (HP) to significantly reduce the number of required radio-frequency (RF) chains without an obvious performance loss, where the fully digital precoder is decomposed into a high-dimensional analog precoder and a low-dimensional digital precoder, we propose to apply SWIPT in HP-based MIMO-NOMA systems, where each user can extract both information and energy from the received RF signals by using a power splitting receiver. Specifically, the cluster-head selection algorithm is proposed to select one user for each beam at first, and then the analog precoding is designed according to the selected cluster heads for all beams. After that, user grouping is performed based on the correlation of users’ equivalent channels. Then, the digital precoding is designed by selecting users with the strongest equivalent channel gain in each beam. Finally, the achievable sum rate is maximized by jointly optimizing power allocation for mmWave massive MIMO-NOMA and power splitting factors for SWIPT, and an iterative optimization algorithm is developed to solve the non-convex problem. Simulation results show that the proposed HP-based MIMO-NOMA with SWIPT can achieve higher spectrum and energy efficiency compared with HP-based MIMO-OMA with SWIPT.
Date of publication 2019
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021