Hyperspectral Data Analysis in R: The hsdar Package

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Lukas W. Lehnert, Hanna Meyer, Wolfgang A. Obermeier, Brenner Silva, Bianca Regeling, Jorg Bendix
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Hyperspectral remote sensing is a promising tool for a variety of applications including ecology, geology, analytical chemistry and medical research. This article presents the new hsdar package for R statistical software, which performs a variety of analysis steps taken during a typical hyperspectral remote sensing approach. The package introduces a new class for efficiently storing large hyperspectral data sets such as hyperspectral cubes within R. The package includes several important hyperspectral analysis tools such as continuum removal, normalized ratio indices and integrates two widely used radiation transfer models. In addition, the package provides methods to directly use the functionality of the caret package for machine learning tasks. Two case studies demonstrate the package's range of functionality: First, plant leaf chlorophyll content is estimated and second, cancer in the human larynx is detected from hyperspectral data.
Date of publication 2019
Code Programming Language R

Copyright Researcher 2022