Image Denoising with Kernels based on Natural Image Relations

View Researcher II's Other Codes

Disclaimer: “The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).”

Please contact us in case of a broken link from here

Authors V. Laparra, J. GutiƩrrez, G. Camps & J. Malo
Journal/Conference Name Journal of Machine Learning Research
Paper Category
Paper Abstract A successful class of image denoising methods is based on Bayesian approaches working in wavelet representations. The performance of these methods improves when relations among the local frequency coefficients are explicitly included. However, in these techniques, analytical estimates can be obtained only for particular combinations of analytical models of signal and noise, thus precluding its straightforward extension to deal with other arbitrary noise sources. In this paper, we propose an alternative non-explicit way to take into account the relations among natural image wavelet coefficients for denoising: we use support vector regression (SVR) in the wavelet domain to enforce these relations in the estimated signal. Since relations among the coefficients are specific to the signal, the regularization property of SVR is exploited to remove the noise, which does not share this feature. The specific signal relations are encoded in an anisotropic kernel obtained from mutual information measures computed on a representative image database. In the proposed scheme, training considers minimizing the Kullback-Leibler divergence (KLD) between the estimated and actual probability functions (or histograms) of signal and noise in order to enforce similarity up to the higher (computationally estimable) order. Due to its non-parametric nature, the method can eventually cope with different noise sources without the need of an explicit re-formulation, as it is strictly necessary under parametric Bayesian formalisms. Results under several noise levels and noise sources show that: (1) the proposed method outperforms conventional wavelet methods that assume coefficient independence, (2) it is similar to state-of-the-art methods that do explicitly include these relations when the noise source is Gaussian, and (3) it gives better numerical and visual performance when more complex, realistic noise sources are considered. Therefore, the proposed machine learning approach can be seen as a more flexible (model-free) alternative to the explicit description of wavelet coefficient relations for image denoising.
Date of publication 2010
Code Programming Language MATLAB
Comment

Copyright Researcher II 2021