Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Simon Lacoste-Julien, Gauthier Gidel, Francis Bach
Journal/Conference Name NeurIPS 2019 12
Paper Category
Paper Abstract When optimizing over-parameterized models, such as deep neural networks, a large set of parameters can achieve zero training error. In such cases, the choice of the optimization algorithm and its respective hyper-parameters introduces biases that will lead to convergence to specific minimizers of the objective. Consequently, this choice can be considered as an implicit regularization for the training of over-parametrized models. In this work, we push this idea further by studying the discrete gradient dynamics of the training of a two-layer linear network with the least-squares loss. Using a time rescaling, we show that, with a vanishing initialization and a small enough step size, this dynamics sequentially learns the solutions of a reduced-rank regression with a gradually increasing rank.
Date of publication 2019
Code Programming Language Unspecified
Comment

Copyright Researcher 2022