Improving OCR Accuracy on Early Printed Books by utilizing Cross Fold Training and Voting

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Uwe Springmann, Frank Puppe, Christoph Wick, Christian Reul
Journal/Conference Name Proceedings - 13th IAPR International Workshop on Document Analysis Systems, DAS 2018
Paper Category
Paper Abstract In this paper we introduce a method that significantly reduces the character error rates for OCR text obtained from OCRopus models trained on early printed books. The method uses a combination of cross fold training and confidence based voting. After allocating the available ground truth in different subsets several training processes are performed, each resulting in a specific OCR model. The OCR text generated by these models then gets voted to determine the final output by taking the recognized characters, their alternatives, and the confidence values assigned to each character into consideration. Experiments on seven early printed books show that the proposed method outperforms the standard approach considerably by reducing the amount of errors by up to 50% and more.
Date of publication 2017
Code Programming Language Multiple
Comment

Copyright Researcher 2022