Indiscapes: Instance Segmentation Networks for Layout Parsing of Historical Indic Manuscripts

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Abhishek Prusty, Sowmya Aitha, Abhishek Trivedi, Ravi Kiran Sarvadevabhatla
Journal/Conference Name 2019 International Conference on Document Analysis and Recognition (ICDAR)
Paper Category
Paper Abstract Historical palm-leaf manuscript and early paper documents from Indian subcontinent form an important part of the world's literary and cultural heritage. Despite their importance, large-scale annotated Indic manuscript image datasets do not exist. To address this deficiency, we introduce Indiscapes, the first ever dataset with multi-regional layout annotations for historical Indic manuscripts. To address the challenge of large diversity in scripts and presence of dense, irregular layout elements (e.g. text lines, pictures, multiple documents per image), we adapt a Fully Convolutional Deep Neural Network architecture for fully automatic, instance-level spatial layout parsing of manuscript images. We demonstrate the effectiveness of proposed architecture on images from the Indiscapes dataset. For annotation flexibility and keeping the non-technical nature of domain experts in mind, we also contribute a custom, web-based GUI annotation tool and a dashboard-style analytics portal. Overall, our contributions set the stage for enabling downstream applications such as OCR and word-spotting in historical Indic manuscripts at scale.
Date of publication 2019
Code Programming Language Jupyter Notebook

Copyright Researcher 2022