Information-Theoretic Generalization Bounds for SGLD via Data-Dependent Estimates
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Jeffrey Negrea, Daniel M. Roy, Mahdi Haghifam, Ashish Khisti, Gintare Karolina Dziugaite |
Journal/Conference Name | NeurIPS 2019 12 |
Paper Category | Artificial Intelligence |
Paper Abstract | In this work, we improve upon the stepwise analysis of noisy iterative learning algorithms initiated by Pensia, Jog, and Loh (2018) and recently extended by Bu, Zou, and Veeravalli (2019). Our main contributions are significantly improved mutual information bounds for Stochastic Gradient Langevin Dynamics via data-dependent estimates. Our approach is based on the variational characterization of mutual information and the use of data-dependent priors that forecast the mini-batch gradient based on a subset of the training samples. Our approach is broadly applicable within the information-theoretic framework of Russo and Zou (2015) and Xu and Raginsky (2017). Our bound can be tied to a measure of flatness of the empirical risk surface. As compared with other bounds that depend on the squared norms of gradients, empirical investigations show that the terms in our bounds are orders of magnitude smaller. |
Date of publication | 2019 |
Code Programming Language | Unspecified |
Comment |