Inner and Inter Label Propagation: Salient Object Detection in the Wild

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Hongyang Li, Huchuan Lu, Zhe Lin, Xiaohui Shen, and Brian Price
Journal/Conference Name IEEE Transactions on Image Processing
Paper Category
Paper Abstract In this paper, we propose a novel label propagation-based method for saliency detection. A key observation is that saliency in an image can be estimated by propagating the labels extracted from the most certain background and object regions. For most natural images, some boundary superpixels serve as the background labels and the saliency of other superpixels are determined by ranking their similarities to the boundary labels based on an inner propagation scheme. For images of complex scenes, we further deploy a three-cue-center-biased objectness measure to pick out and propagate foreground labels. A co-transduction algorithm is devised to fuse both boundary and objectness labels based on an inter propagation scheme. The compactness criterion decides whether the incorporation of objectness labels is necessary, thus greatly enhancing computational efficiency. Results on five benchmark data sets with pixelwise accurate annotations show that the proposed method achieves superior performance compared with the newest state-of-the-arts in terms of different evaluation metrics.
Date of publication 2015
Code Programming Language MATLAB
Comment

Copyright Researcher 2021