Integrated modeling of protein-coding genes in the Manduca sexta genome using RNA-Seq data from the biochemical model insect

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Xiaolong Cao, Haobo Jiang
Journal/Conference Name Insect Biochemistry and Molecular Biology
Paper Category
Paper Abstract The genome sequence of Manduca sexta was recently determined using 454 technology. Cufflinks and MAKER2 were used to establish gene models in the genome assembly based on the RNA-Seq data and other species' sequences. Aided by the extensive RNA-Seq data from 50 tissue samples at various life stages, annotators over the world (including the present authors) have manually confirmed and improved a small percentage of the models after spending months of effort. While such collaborative efforts are highly commendable, many of the predicted genes still have problems which may hamper future research on this insect species. As a biochemical model representing lepidopteran pests, M. sexta has been used extensively to study insect physiological processes for over five decades. In this work, we assembled Manduca datasets Cufflinks 3.0, Trinity 4.0, and Oases 4.0 to assist the manual annotation efforts and development of Official Gene Set (OGS) 2.0. To further improve annotation quality, we developed methods to evaluate gene models in the MAKER2, Cufflinks, Oases and Trinity assemblies and selected the best ones to constitute MCOT 1.0 after thorough crosschecking. MCOT 1.0 has 18,089 genes encoding 31,666 proteins 32.8% match OGS 2.0 models perfectly or near perfectly, 11,747 differ considerably, and 29.5% are absent in OGS 2.0. Future automation of this process is anticipated to greatly reduce human efforts in generating comprehensive, reliable models of structural genes in other genome projects where extensive RNA-Seq data are available.
Date of publication 2015
Code Programming Language Python
Comment

Copyright Researcher 2021