Intelligent Embedded Vision for Summarization of Multiview Videos in IIoT

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Tanveer Hussain, Khan Muhammad, J. Ser, S. Baik, V. H. C. de Albuquerque
Journal/Conference Name I
Paper Category
Paper Abstract Nowadays, video sensors are used on a large scale for various applications, including security monitoring and smart transportation. However, the limited communication bandwidth and storage constraints make it challenging to process such heterogeneous nature of Big Data in real time. Multiview video summarization (MVS) enables us to suppress redundant data in distributed video sensors settings. The existing MVS approaches process video data in offline manner by transmitting them to the local or cloud server for analysis, which requires extra streaming to conduct summarization, huge bandwidth, and are not applicable for integration with industrial Internet of Things (IIoT). This article presents a light-weight convolutional neural network (CNN) and IIoT-based computationally intelligent (CI) MVS framework. Our method uses an IIoT network containing smart devices, Raspberry Pi (RPi) (clients and master) with embedded cameras to capture multiview video data. Each client RPi detects target in frames via light-weight CNN model, analyzes these targets for traffic and crowd density, and searches for suspicious objects to generate alert in the IIoT network. The frames of each client RPi are encoded and transmitted with approximately 17.02% smaller size of each frame to master RPi for final MVS. Empirical analysis shows that our proposed framework can be used in industrial environments for various applications such as security and smart transportation and can be proved beneficial for saving resources. 11 [Online]. Available https//
Date of publication 2020
Code Programming Language Python

Copyright Researcher 2022