Interactive Cosegmentation Using Global and Local Energy Optimization

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Xingping Dong, Jianbing Shen, Ling Shao, Ming-Hsuan Yang
Journal/Conference Name IEEE Transactions on Image Processing
Paper Category
Paper Abstract We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothness in a local neighborhood. This energy optimization can be converted into a constrained quadratic programming problem. To reduce the computational complexity, we propose an iterative optimization algorithm to decompose this optimization problem into several subproblems. The experimental results show that our method outperforms the state-of-the-art unsupervised cosegmentation and interactive cosegmentation methods on the iCoseg and MSRC benchmark data sets.
Date of publication 2015
Code Programming Language MATLAB
Comment

Copyright Researcher 2021