Interactive Image Segmentation by Maximal Similarity based Region Merging

View Researcher's Other Codes

MATLAB code for the paper: “Interactive Image Segmentation by Maximal Similarity based Region Merging”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Jifeng Ning, Lei Zhang , David Zhang and Chengke Wu
Journal/Conference Name Pattern Recognition
Paper Category
Paper Abstract Efficient and effective image segmentation is an important task in computer vision and object recognition. Since fully automatic image segmentation is usually very hard for natural images, interactive schemes with a few simple user inputs are good solutions. This paper presents a new region merging based interactive image segmentation method. The users only need to roughly indicate the location and region of the object and background by using strokes, which are called markers. A novel maximal-similarity based region merging mechanism is proposed to guide the merging process with the help of markers. A region R is merged with its adjacent region Q if Q has the highest similarity with Q among all Q's adjacent regions. The proposed method automatically merges the regions that are initially segmented by mean shift segmentation, and then effectively extracts the object contour by labelling all the non-marker regions as either background or object. The region merging process is adaptive to the image content and it does not need to set the similarity threshold in advance. Extensive experiments are performed and the results show that the proposed scheme can reliably extract the object contour from the complex background.
Date of publication 2010
Code Programming Language MATLAB
Comment

Copyright Researcher 2021