Invertible Convolutional Flow

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Daniel Duckworth, Laurent Dinh, Dale Schuurmans, Mahdi Karami, Jascha Sohl-Dickstein
Journal/Conference Name NeurIPS 2019 12
Paper Category
Paper Abstract Normalizing flows can be used to construct high quality generative probabilistic models, but training and sample generation require repeated evaluation of Jacobian determinants and function inverses. To make such computations feasible, current approaches employ highly constrained architectures that produce diagonal, triangular, or low rank Jacobian matrices. As an alternative, we investigate a set of novel normalizing flows based on the circular and symmetric convolutions. We show that these transforms admit efficient Jacobian determinant computation and inverse mapping (deconvolution) in O(N log N) time. Additionally, element-wise multiplication, widely used in normalizing flow architectures, can be combined with these transforms to increase modeling flexibility. We further propose an analytic approach to designing nonlinear elementwise bijectors that induce special properties in the intermediate layers, by implicitly introducing specific regularizers in the loss. We show that these transforms allow more effective normalizing flow models to be developed for generative image models.
Date of publication 2019
Code Programming Language Unspecified
Comment

Copyright Researcher 2022