iqLearn: Interactive Q-Learning in R

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Kristin A. Linn, Eric B. Laber, Leonard A. Stefanski
Journal/Conference Name Journal of statistical software
Paper Category
Paper Abstract Chronic illness treatment strategies must adapt to the evolving health status of the patient receiving treatment. Data-driven dynamic treatment regimes can offer guidance for clinicians and intervention scientists on how to treat patients over time in order to bring about the most favorable clinical outcome on average. Methods for estimating optimal dynamic treatment regimes, such as Q-learning, typically require modeling nonsmooth, nonmonotone transformations of data. Thus, building well-fitting models can be challenging and in some cases may result in a poor estimate of the optimal treatment regime. Interactive Q-learning (IQ-learning) is an alternative to Q-learning that only requires modeling smooth, monotone transformations of the data. The R package iqLearn provides functions for implementing both the IQ-learning and Q-learning algorithms. We demonstrate how to estimate a two-stage optimal treatment policy with iqLearn using a generated data set bmiData which mimics a two-stage randomized body mass index reduction trial with binary treatments at each stage.
Date of publication 2015
Code Programming Language R
Comment

Copyright Researcher 2021