Joint Bilateral Learning for Real-time Universal Photorealistic Style Transfer

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Hui Fang, Zheng Sun, Meng Zhang, Jiawen Chen, Xide Xia, Tianfan Xue, Brian Kulis
Journal/Conference Name ECCV 2020 8
Paper Category
Paper Abstract Photorealistic style transfer is the task of transferring the artistic style of an image onto a content target, producing a result that is plausibly taken with a camera. Recent approaches, based on deep neural networks, produce impressive results but are either too slow to run at practical resolutions, or still contain objectionable artifacts. We propose a new end-to-end model for photorealistic style transfer that is both fast and inherently generates photorealistic results. The core of our approach is a feed-forward neural network that learns local edge-aware affine transforms that automatically obey the photorealism constraint. When trained on a diverse set of images and a variety of styles, our model can robustly apply style transfer to an arbitrary pair of input images. Compared to the state of the art, our method produces visually superior results and is three orders of magnitude faster, enabling real-time performance at 4K on a mobile phone. We validate our method with ablation and user studies.
Date of publication 2020
Code Programming Language Unspecified
Comment

Copyright Researcher 2022