Joint Discriminative Dimensionality Reduction and Dictionary Learning for Face Recognition

View Researcher's Other Codes

MATLAB code for the paper: “Joint Discriminative Dimensionality Reduction and Dictionary Learning for Face Recognition”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Zhizhao Feng, Meng Yang, Lei Zhang, Yan Liu and David Zhang
Journal/Conference Name Pattern Recognition
Paper Category
Paper Abstract In linear representation based face recognition (FR), it is expected that a discriminative dictionary can be learned from the training samples so that the query sample can be better represented for classification. On the other hand, dimensionality reduction is also an important issue for FR. It can not only reduce significantly the storage space of face images, but also enhance the discrimination of face feature. Existing methods mostly perform dimensionality reduction and dictionary learning separately, which may not fully exploit the discriminative information in the training samples. In this paper, we propose to learn jointly the projection matrix for dimensionality reduction and the discriminative dictionary for face representation. The joint learning makes the learned projection and dictionary better fit with each other so that a more effective face classification can be obtained. The proposed algorithm is evaluated on benchmark face databases in comparison with existing linear representation based methods, and the results show that the joint learning improves the FR rate, particularly when the number of training samples per class is small.
Date of publication 2013
Code Programming Language MATLAB
Comment

Copyright Researcher 2021