Joint Optimization of Masks and Deep Recurrent Neural Networks for Monaural Source Separation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Minje Kim, Po-Sen Huang, Paris Smaragdis, Mark Hasegawa-Johnson
Journal/Conference Name IEEE/ACM Transactions on Audio Speech and Language Processing
Paper Category
Paper Abstract Monaural source separation is important for many real world applications. It is challenging because, with only a single channel of information available, without any constraints, an infinite number of solutions are possible. In this paper, we explore joint optimization of masking functions and deep recurrent neural networks for monaural source separation tasks, including monaural speech separation, monaural singing voice separation, and speech denoising. The joint optimization of the deep recurrent neural networks with an extra masking layer enforces a reconstruction constraint. Moreover, we explore a discriminative criterion for training neural networks to further enhance the separation performance. We evaluate the proposed system on the TSP, MIR-1K, and TIMIT datasets for speech separation, singing voice separation, and speech denoising tasks, respectively. Our approaches achieve 2.30--4.98 dB SDR gain compared to NMF models in the speech separation task, 2.30--2.48 dB GNSDR gain and 4.32--5.42 dB GSIR gain compared to existing models in the singing voice separation task, and outperform NMF and DNN baselines in the speech denoising task.
Date of publication 2015
Code Programming Language Multiple

Copyright Researcher 2022