Joint Selection in Mixed Models using Regularized PQL

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Francis K. C. Hui, Samuel Mueller, Alan Welsh
Journal/Conference Name Journal of the American Statistical Association
Paper Category
Paper Abstract ABSTRACTThe application of generalized linear mixed models presents some major challenges for both estimation, due to the intractable marginal likelihood, and model selection, as we usually want to jointly select over both fixed and random effects. We propose to overcome these challenges by combining penalized quasi-likelihood (PQL) estimation with sparsity inducing penalties on the fixed and random coefficients. The resulting approach, referred to as regularized PQL, is a computationally efficient method for performing joint selection in mixed models. A key aspect of regularized PQL involves the use of a group based penalty for the random effects: sparsity is induced such that all the coefficients for a random effect are shrunk to zero simultaneously, which in turn leads to the random effect being removed from the model. Despite being a quasi-likelihood approach, we show that regularized PQL is selection consistent, that is, it asymptotically selects the true set of fixed and random effects, in the setti...
Date of publication 2017
Code Programming Language R

Copyright Researcher 2021