Joint Viewpoint and Keypoint Estimation with Real and Synthetic Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Pau Panareda Busto, Juergen Gall
Journal/Conference Name Pattern Recognition
Paper Category
Paper Abstract The estimation of viewpoints and keypoints effectively enhance object detection methods by extracting valuable traits of the object instances. While the output of both processes differ, i.e., angles vs. list of characteristic points, they indeed share the same focus on how the object is placed in the scene, inducing that there is a certain level of correlation between them. Therefore, we propose a convolutional neural network that jointly computes the viewpoint and keypoints for different object categories. By training both tasks together, each task improves the accuracy of the other. Since the labelling of object keypoints is very time consuming for human annotators, we also introduce a new synthetic dataset with automatically generated viewpoint and keypoints annotations. Our proposed network can also be trained on datasets that contain viewpoint and keypoints annotations or only one of them. The experiments show that the proposed approach successfully exploits this implicit correlation between the tasks and outperforms previous techniques that are trained independently.
Date of publication 2019
Code Programming Language Unspecified

Copyright Researcher 2022