Jointly Attentive Spatial-Temporal Pooling Networks for Video-based Person Re-Identification

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Shuangjie Xu, Yu Cheng, Yang Yang, Kang Gu, Pan Zhou, Shiyu Chang
Journal/Conference Name ICCV 2017 10
Paper Category
Paper Abstract Person Re-Identification (person re-id) is a crucial task as its applications in visual surveillance and human-computer interaction. In this work, we present a novel joint Spatial and Temporal Attention Pooling Network (ASTPN) for video-based person re-identification, which enables the feature extractor to be aware of the current input video sequences, in a way that interdependency from the matching items can directly influence the computation of each other's representation. Specifically, the spatial pooling layer is able to select regions from each frame, while the attention temporal pooling performed can select informative frames over the sequence, both pooling guided by the information from distance matching. Experiments are conduced on the iLIDS-VID, PRID-2011 and MARS datasets and the results demonstrate that this approach outperforms existing state-of-art methods. We also analyze how the joint pooling in both dimensions can boost the person re-id performance more effectively than using either of them separately.
Date of publication 2017
Code Programming Language Lua
Comment

Copyright Researcher 2022