Jointly Extracting and Compressing Documents with Summary State Representations

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Shay B. Cohen, Zita Marinho, Shashi Narayan, André F. T. Martins, Afonso Mendes, Sebastião Miranda
Journal/Conference Name NAACL 2019 6
Paper Category
Paper Abstract We present a new neural model for text summarization that first extracts sentences from a document and then compresses them. The proposed model offers a balance that sidesteps the difficulties in abstractive methods while generating more concise summaries than extractive methods. In addition, our model dynamically determines the length of the output summary based on the gold summaries it observes during training and does not require length constraints typical to extractive summarization. The model achieves state-of-the-art results on the CNN/DailyMail and Newsroom datasets, improving over current extractive and abstractive methods. Human evaluations demonstrate that our model generates concise and informative summaries. We also make available a new dataset of oracle compressive summaries derived automatically from the CNN/DailyMail reference summaries.
Date of publication 2019
Code Programming Language C++
Comment

Copyright Researcher 2022