Jointly Learning Convolutional Representations to Compress Radiological Images and Classify Thoracic Diseases in the Compressed Domain

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Soumava Paul, Debdoot Sheet, Aupendu Kar, Ramanathan Sethuraman, Ekagra Ranjan, Siddharth Kapoor
Journal/Conference Name ICVGIP 2018 2018 12
Paper Category
Paper Abstract Deep learning models trained in natural images are commonly used for different classification tasks in the medical domain. Generally, very high dimensional medical images are down-sampled by us- ing interpolation techniques before feeding them to deep learning models that are ImageNet compliant and accept only low-resolution images of size 224 × 224 px. This popular technique may lead to the loss of key information thus hampering the classification. Signifi- cant pathological features in medical images typically being small sized and highly affected. To combat this problem, we introduce a convolutional neural network (CNN) based classification approach which learns to reduce the resolution of the image using an autoen- coder and at the same time classify it using another network, while both the tasks are trained jointly. This algorithm guides the model to learn essential representations from high-resolution images for classification along with reconstruction. We have used the publicly available dataset of chest x-rays to evaluate this approach and have outperformed state-of-the-art on test data. Besides, we have experi- mented with the effects of different augmentation approaches in this dataset and report baselines using some well known ImageNet class of CNNs.
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022