JU\_ETCE\_17\_21 at SemEval-2019 Task 6: Efficient Machine Learning and Neural Network Approaches for Identifying and Categorizing Offensive Language in Tweets
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Sudip Kumar Naskar, Mainak Pal, Somnath Banerjee, Preeti Mukherjee |
Journal/Conference Name | SEMEVAL 2019 6 |
Paper Category | Artificial Intelligence |
Paper Abstract | This paper describes our system submissions as part of our participation (team name: JU{\_}ETCE{\_}17{\_}21) in the SemEval 2019 shared task 6: {``}OffensEval: Identifying and Catego- rizing Offensive Language in Social Media{''}. We participated in all the three sub-tasks: i) Sub-task A: offensive language identification, ii) Sub-task B: automatic categorization of of- fense types, and iii) Sub-task C: offense target identification. We employed machine learn- ing as well as deep learning approaches for the sub-tasks. We employed Convolutional Neural Network (CNN) and Recursive Neu- ral Network (RNN) Long Short-Term Memory (LSTM) with pre-trained word embeddings. We used both word2vec and Glove pre-trained word embeddings. We obtained the best F1- score using CNN based model for sub-task A, LSTM based model for sub-task B and Lo- gistic Regression based model for sub-task C. Our best submissions achieved 0.7844, 0.5459 and 0.48 F1-scores for sub-task A, sub-task B and sub-task C respectively. |
Date of publication | 2019 |
Code Programming Language | Jupyter Notebook |
Comment |