k-hop Graph Neural Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Michalis Vazirgiannis, Giannis Nikolentzos, George Dasoulas
Journal/Conference Name Neural Networks
Paper Category
Paper Abstract Graph neural networks (GNNs) have emerged recently as a powerful architecture for learning node and graph representations. Standard GNNs have the same expressive power as the Weisfeiler-Leman test of graph isomorphism in terms of distinguishing non-isomorphic graphs. However, it was recently shown that this test cannot identify fundamental graph properties such as connectivity and triangle freeness. We show that GNNs also suffer from the same limitation. To address this limitation, we propose a more expressive architecture, k-hop GNNs, which updates a node's representation by aggregating information not only from its direct neighbors, but from its k-hop neighborhood. We show that the proposed architecture can identify fundamental graph properties. We evaluate the proposed architecture on standard node classification and graph classification datasets. Our experimental evaluation confirms our theoretical findings since the proposed model achieves performance better or comparable to standard GNNs and to state-of-the-art algorithms.
Date of publication 2019
Code Programming Language Python

Copyright Researcher 2022