k-Space Deep Learning for Accelerated MRI
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Jong Chul Ye, Leonard Sunwoo, Yoseob Han |
Journal/Conference Name | IEEE Transactions on Medical Imaging |
Paper Category | Artificial Intelligence |
Paper Abstract | The annihilating filter-based low-rank Hankel matrix approach (ALOHA) is one of the state-of-the-art compressed sensing approaches that directly interpolates the missing k-space data using low-rank Hankel matrix completion. The success of ALOHA is due to the concise signal representation in the k-space domain thanks to the duality between structured low-rankness in the k-space domain and the image domain sparsity. Inspired by the recent mathematical discovery that links convolutional neural networks to Hankel matrix decomposition using data-driven framelet basis, here we propose a fully data-driven deep learning algorithm for k-space interpolation. Our network can be also easily applied to non-Cartesian k-space trajectories by simply adding an additional regridding layer. Extensive numerical experiments show that the proposed deep learning method consistently outperforms the existing image-domain deep learning approaches. |
Date of publication | 2018 |
Code Programming Language | MATLAB |
Comment |