kamila: Clustering Mixed-Type Data in R and Hadoop

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Alexander H. Foss, Marianthi Markatou
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract In this paper we discuss the challenge of equitably combining continuous (quantitative) and categorical (qualitative) variables for the purpose of cluster analysis. Existing techniques require strong parametric assumptions, or difficult-to-specify tuning parameters. We describe the kamila package, which includes a weighted k-means approach to clustering mixed-type data, a method for estimating weights for mixed-type data (ModhaSpangler weighting), and an additional semiparametric method recently proposed in the literature (KAMILA). We include a discussion of strategies for estimating the number of clusters in the data, and describe the implementation of one such method in the current R package. Background and usage of these clustering methods are presented. We then show how the KAMILA algorithm can be adapted to a map-reduce framework, and implement the resulting algorithm using Hadoop for clustering very large mixed-type data sets.
Date of publication 2018
Code Programming Language R
Comment

Copyright Researcher 2022