Kandinsky Patterns

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Heimo Mueller, Andreas Holzinger
Journal/Conference Name Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Paper Category
Paper Abstract Kandinsky Figures and Kandinsky Patterns are mathematically describable, simple self-contained hence controllable test data sets for the development, validation and training of explainability in artificial intelligence. Whilst Kandinsky Patterns have these computationally manageable properties, they are at the same time easily distinguishable from human observers. Consequently, controlled patterns can be described by both humans and computers. We define a Kandinsky Pattern as a set of Kandinsky Figures, where for each figure an "infallible authority" defines that the figure belongs to the Kandinsky Pattern. With this simple principle we build training and validation data sets for automatic interpretability and context learning. In this paper we describe the basic idea and some underlying principles of Kandinsky Patterns and provide a Github repository to invite the international machine learning research community to a challenge to experiment with our Kandinsky Patterns to expand and thus make progress in the field of explainable AI and to contribute to the upcoming field of explainability and causability.
Date of publication 2019
Code Programming Language Unspecified
Comment

Copyright Researcher 2022