KATE: K-Competitive Autoencoder for Text

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mohammed J. Zaki, Yu Chen
Journal/Conference Name Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Paper Category
Paper Abstract Autoencoders have been successful in learning meaningful representations from image datasets. However, their performance on text datasets has not been widely studied. Traditional autoencoders tend to learn possibly trivial representations of text documents due to their confounding properties such as high-dimensionality, sparsity and power-law word distributions. In this paper, we propose a novel k-competitive autoencoder, called KATE, for text documents. Due to the competition between the neurons in the hidden layer, each neuron becomes specialized in recognizing specific data patterns, and overall the model can learn meaningful representations of textual data. A comprehensive set of experiments show that KATE can learn better representations than traditional autoencoders including denoising, contractive, variational, and k-sparse autoencoders. Our model also outperforms deep generative models, probabilistic topic models, and even word representation models (e.g., Word2Vec) in terms of several downstream tasks such as document classification, regression, and retrieval.
Date of publication 2017
Code Programming Language Python
Comment

Copyright Researcher 2022