Kernel Cross-Correlator

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Chen Wang, Junsong Yuan, Lihua Xie, Le Zhang
Journal/Conference Name 32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Paper Category
Paper Abstract Cross-correlator plays a significant role in many visual perception tasks, such as object detection and tracking. Beyond the linear cross-correlator, this paper proposes a kernel cross-correlator (KCC) that breaks traditional limitations. First, by introducing the kernel trick, the KCC extends the linear cross-correlation to non-linear space, which is more robust to signal noises and distortions. Second, the connection to the existing works shows that KCC provides a unified solution for correlation filters. Third, KCC is applicable to any kernel function and is not limited to circulant structure on training data, thus it is able to predict affine transformations with customized properties. Last, by leveraging the fast Fourier transform (FFT), KCC eliminates direct calculation of kernel vectors, thus achieves better performance yet still with a reasonable computational cost. Comprehensive experiments on visual tracking and human activity recognition using wearable devices demonstrate its robustness, flexibility, and efficiency. The source codes of both experiments are released at https//github.com/wang-chen/KCC
Date of publication 2017
Code Programming Language Multiple
Comment

Copyright Researcher 2022