Kernel Exponential Family Estimation via Doubly Dual Embedding

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Niao He, Bo Dai, Hanjun Dai, Le Song, Dale Schuurmans, Arthur Gretton
Journal/Conference Name AISTATS 2019 - 22nd International Conference on Artificial Intelligence and Statistics
Paper Category
Paper Abstract We investigate penalized maximum log-likelihood estimation for exponential family distributions whose natural parameter resides in a reproducing kernel Hilbert space. Key to our approach is a novel technique, doubly dual embedding, that avoids computation of the partition function. This technique also allows the development of a flexible sampling strategy that amortizes the cost of Monte-Carlo sampling in the inference stage. The resulting estimator can be easily generalized to kernel conditional exponential families. We establish a connection between kernel exponential family estimation and MMD-GANs, revealing a new perspective for understanding GANs. Compared to the score matching based estimators, the proposed method improves both memory and time efficiency while enjoying stronger statistical properties, such as fully capturing smoothness in its statistical convergence rate while the score matching estimator appears to saturate. Finally, we show that the proposed estimator empirically outperforms state-of-the-art
Date of publication 2018
Code Programming Language Python
Comment

Copyright Researcher 2022