L1 penalized estimation in the Cox proportional hazards model

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Jelle J. Goeman
Journal/Conference Name Biometrical journal. Biometrische Zeitschrift
Paper Category
Paper Abstract This article presents a novel algorithm that efficiently computes L(1) penalized (lasso) estimates of parameters in high-dimensional models. The lasso has the property that it simultaneously performs variable selection and shrinkage, which makes it very useful for finding interpretable prediction rules in high-dimensional data. The new algorithm is based on a combination of gradient ascent optimization with the Newton-Raphson algorithm. It is described for a general likelihood function and can be applied in generalized linear models and other models with an L(1) penalty. The algorithm is demonstrated in the Cox proportional hazards model, predicting survival of breast cancer patients using gene expression data, and its performance is compared with competing approaches. An R package, penalized, that implements the method, is available on CRAN.
Date of publication 2009
Code Programming Language R
Comment

Copyright Researcher 2021