Lagged Explanatory Variables and the Estimation of Causal Effects

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Marc F. Bellemare, Takaaki Masaki, Thomas B. Pepinsky
Journal/Conference Name THE JOURNAL OF POLITICS
Paper Category
Paper Abstract Lagged explanatory variables are commonly used in political science in response to endogeneity concerns in observational data. There exist surprisingly few formal analyses or theoretical results, however, that establish whether lagged explanatory variables are effective in surmounting endogeneity concerns and, if so, under what conditions. We show that lagging explanatory variables as a response to endogeneity moves the channel through which endogeneity biases parameter estimates, supplementing a “selection on observables” assumption with an equally untestable “no dynamics among unobservables” assumption. We build our argument intuitively using directed acyclic graphs and then provide analytical results on the bias of lag identification in a simple linear regression framework. We then use Monte Carlo simulations to show how, even under favorable conditions, lag identification leads to incorrect inferences. We conclude by specifying the conditions under which lagged explanatory variables are appropriate re...
Date of publication 2015
Code Programming Language R
Comment

Copyright Researcher 2022