Large-Scale-Fading Decoding in Cellular Massive MIMO Systems With Spatially Correlated Channels

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Trinh Van Chien, Christopher Mollén, Emil Björnson
Journal/Conference Name IEEE Transactions on Communications
Paper Category
Paper Abstract Massive multiple-input–multiple-output (MIMO) systems can suffer from coherent intercell interference due to the phenomenon of pilot contamination. This paper investigates a two-layer decoding method that mitigates both coherent and non-coherent interference in multi-cell Massive MIMO. To this end, each base station (BS) first estimates the channels to intra-cell users using either minimum mean-squared error (MMSE) or element-wise MMSE estimation based on uplink pilots. The estimates are used for local decoding on each BS followed by a second decoding layer where the BSs cooperate to mitigate inter-cell interference. An uplink achievable spectral efficiency (SE) expression is computed for arbitrary two-layer decoding schemes. A closed form expression is then obtained for correlated Rayleigh fading, maximum-ratio combining, and the proposed large-scale fading decoding (LSFD) in the second layer. We also formulate a sum SE maximization problem with both the data power and LSFD vectors as optimization variables. Since this is an NP-hard problem, we develop a low-complexity algorithm based on the weighted MMSE approach to obtain a local optimum. The numerical results show that both data power control and LSFD improve the sum SE performance over single-layer decoding multi-cell Massive MIMO systems.
Date of publication 2019
Code Programming Language MATLAB

Copyright Researcher 2021