Learning a Neural Solver for Multiple Object Tracking

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Guillem Brasó, Laura Leal-Taixé
Journal/Conference Name arXiv preprint
Paper Category
Paper Abstract Graphs offer a natural way to formulate Multiple Object Tracking (MOT) within the tracking-by-detection paradigm. However, they also introduce a major challenge for learning methods, as defining a model that can operate on such \textit{structured domain} is not trivial. As a consequence, most learning-based work has been devoted to learning better features for MOT, and then using these with well-established optimization frameworks. In this work, we exploit the classical network flow formulation of MOT to define a fully differentiable framework based on Message Passing Networks (MPNs). By operating directly on the graph domain, our method can reason globally over an entire set of detections and predict final solutions. Hence, we show that learning in MOT does not need to be restricted to feature extraction, but it can also be applied to the data association step. We show a significant improvement in both MOTA and IDF1 on three publicly available benchmarks. Our code is available at https//bit.ly/motsolv .
Date of publication 2019
Code Programming Language Python
Comment

Copyright Researcher 2022