Learning Activation Functions to Improve Deep Neural Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Matthew Hoffman, Pierre Baldi, Forest Agostinelli, Peter Sadowski
Journal/Conference Name 3rd International Conference on Learning Representations, ICLR 2015 - Workshop Track Proceedings
Paper Category
Paper Abstract Artificial neural networks typically have a fixed, non-linear activation function at each neuron. We have designed a novel form of piecewise linear activation function that is learned independently for each neuron using gradient descent. With this adaptive activation function, we are able to improve upon deep neural network architectures composed of static rectified linear units, achieving state-of-the-art performance on CIFAR-10 (7.51%), CIFAR-100 (30.83%), and a benchmark from high-energy physics involving Higgs boson decay modes.
Date of publication 2014
Code Programming Language Multiple
Comment

Copyright Researcher 2022