Learning Human-Object Interactions by Graph Parsing Neural Networks
View Researcher's Other CodesDisclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).
Please contact us in case of a broken link from here
Authors | Wenguan Wang, Song-Chun Zhu, Jianbing Shen, Siyuan Qi, Baoxiong Jia |
Journal/Conference Name | ECCV 2018 9 |
Paper Category | Artificial Intelligence |
Paper Abstract | This paper addresses the task of detecting and recognizing human-object interactions (HOI) in images and videos. We introduce the Graph Parsing Neural Network (GPNN), a framework that incorporates structural knowledge while being differentiable end-to-end. For a given scene, GPNN infers a parse graph that includes i) the HOI graph structure represented by an adjacency matrix, and ii) the node labels. Within a message passing inference framework, GPNN iteratively computes the adjacency matrices and node labels. We extensively evaluate our model on three HOI detection benchmarks on images and videos: HICO-DET, V-COCO, and CAD-120 datasets. Our approach significantly outperforms state-of-art methods, verifying that GPNN is scalable to large datasets and applies to spatial-temporal settings. The code is available at https://github.com/SiyuanQi/gpnn. |
Date of publication | 2018 |
Code Programming Language | Python |
Comment |