Learning Multi-task Correlation Particle Filters for Visual Tracking

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Tianzhu Zhang, Changsheng Xu, Ming-Hsuan Yang
Journal/Conference Name IEEE Transactions on Pattern Analysis and Machineā€¦
Paper Category
Paper Abstract In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different object parts and features into account to learn the correlation filters jointly. Next, the proposed MCPF is introduced to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed MCPF enjoys several merits. First, it exploits the interdependencies among different features to derive the correlation filters jointly, and makes the learned filters complement and enhance each other to obtain consistent responses. Second, it handles partial occlusion via a part-based representation, and exploits the intrinsic relationship among local parts via spatial constraints to preserve object structure and learn the correlation filters jointly. Third, it effectively handles large scale variation via a sampling scheme by drawing particles at different scales for target object state estimation. Fourth, it shepherds the sampled particles toward the modes of the target state distribution via the MCF, and effectively covers object states well using fewer particles than conventional particle filters, thereby resulting in robust tracking performance and low computational cost. Extensive experimental results on four challenging benchmark datasets demonstrate that the proposed MCPF tracking algorithm performs favorably against the state-of-the-art methods.
Date of publication 2018
Code Programming Language MATLAB
Comment

Copyright Researcher 2021