Learning to Deblur Images with Exemplars

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Jin-shan Pan, Wenqi Ren, Zhe Hu, Ming-Hsuan Yang
Journal/Conference Name IEEE transactions on pattern analysis and machineā€¦
Paper Category
Paper Abstract Human faces are one interesting object class with numerous applications. While significant progress has been made in the generic deblurring problem, existing methods are less effective for blurry face images. The success of the state-of-the-art image deblurring algorithms stems mainly from implicit or explicit restoration of salient edges for kernel estimation. However, existing methods are less effective as only few edges can be restored from blurry face images for kernel estimation. In this paper, we address the problem of deblurring face images by exploiting facial structures. We propose a deblurring algorithm based on an exemplar dataset without using coarse-to-fine strategies or heuristic edge selections. In addition, we develop a convolutional neural network to restore sharp edges from blurry face images for deblurring. Extensive experiments against the state-of-the-art methods demonstrate the effectiveness of the proposed algorithms for deblurring face images. In addition, we show the proposed algorithms can be applied to image deblurring for other object classes.
Date of publication 2018
Code Programming Language MATLAB
Comment

Copyright Researcher 2021