LeFlow: Enabling Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Networks

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Download
Authors Daniel H. Noronha, Bahar Salehpour, Steven J. E. Wilton
Journal/Conference Name 5th International Workshop on FPGAs for Software Programmers, FSP 2018, co-located with International Conference on Field Programmable Logic and Applications, FPL 2018
Paper Category
Paper Abstract Recent work has shown that Field-Programmable Gate Arrays (FPGAs) play an important role in the acceleration of Machine Learning applications. Initial specification of machine learning applications are often done using a high-level Python-oriented framework such as Tensorflow, followed by a manual translation to either C or RTL for synthesis using vendor tools. This manual translation step is time-consuming and requires expertise that limit the applicability of FPGAs in this important domain. In this paper, we present an open-source tool-flow that maps numerical computation models written in Tensorflow to synthesizable hardware. Unlike other tools, which are often constrained by a small number of inflexible templates, our flow uses Google's XLA compiler which emits LLVM code directly from a Tensorflow specification. This LLVM code can then be used with a high-level synthesis tool to automatically generate hardware. We show that our flow allows users to generate Deep Neural Networks with very few lines of Python code.
Date of publication 2018
Code Programming Language Multiple
Comment

Copyright Researcher 2022