Lidar-based closed-loop wake redirection in high-fidelity simulation

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Steffen Raach, Sjoerd Boersma, Bart Doekemeijer, Jan-Willem van Wingerden, Po Wen Cheng
Journal/Conference Name Journal of Physics: Conference Series
Paper Category
Paper Abstract This work presents the next step in realizing lidar-based closed-loop wake redirection control. Lidar-based closed-loop wake redirection aims at repositioning the wake at a desired position by yawing the wind turbine. The actual wake deflection is derived from lidar measurements and used in a closed-loop control scheme. Compared to an open-loop setting in which temporal changes are not taken into account, lidar-based closed-loop wake redirection can react on temporal disturbances. This yields a more robust control solution due to the employed closed-loop control framework. In this work, for the first time, the concept is implemented in an LES environment namely the PArallelized Large-eddy simulation Model (PALM) code. In PALM lidar measurements are simulated using a lidar model which are processed to estimate the wake position. A controller is synthesized by the usage of a the reduced order wind farm model WindFarmSimulator (WFSim). High-fidelity simulation results illustrate the controller's ability to adapt to a temporal changing crosswind disturbance in a turbulent simulation scenario. Consequently, it increases the power output of the two-turbine scenario compared to the open-loop approach.
Date of publication 2018
Code Programming Language Fortran

Copyright Researcher 2022