Local Likelihood Estimation for Covariance Functions with Spatially-Varying Parameters: The convoSPAT Package for R

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Mark D. Risser, Catherine A. Calder
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract In spite of the interest in and appeal of convolution-based approaches for nonstationary spatial modeling, off-the-shelf software for model fitting does not as of yet exist. Convolution-based models are highly flexible yet notoriously difficult to fit, even with relatively small data sets. The general lack of pre-packaged options for model fitting makes it difficult to compare new methodology in nonstationary modeling with other existing methods, and as a result most new models are simply compared to stationary models. Using a convolution-based approach, we present a new nonstationary covariance function for spatial Gaussian process models that allows for efficient computing in two ways: first, by representing the spatially-varying parameters via a discrete mixture or "mixture component" model, and second, by estimating the mixture component parameters through a local likelihood approach. In order to make computations for a convolutionbased nonstationary spatial model readily available, this paper also presents and describes the convoSPAT package for R. The nonstationary model is fit to both a synthetic data set and a real data application involving annual precipitation to demonstrate the capabilities of the package.
Date of publication 2015
Code Programming Language R
Comment

Copyright Researcher 2022