Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification

View Researcher's Other Codes

MATLAB code for the paper: “Local Log-Euclidean Multivariate Gaussian Descriptor and Its Application to Image Classification”.

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Peihua Li, Qilong Wang, Hui Zeng, and Lei Zhang
Journal/Conference Name IEEE Transactions on Pattern Analysis and Machine Intelligence
Paper Category
Paper Abstract This paper presents a novel image descriptor to effectively characterize the local, high-order image statistics. Our work is inspired by the Diffusion Tensor Imaging and the structure tensor method (or covariance descriptor), and motivated by popular distribution-based descriptors such as SIFT and HoG. Our idea is to associate one pixel with a multivariate Gaussian distribution estimated in the neighborhood. The challenge lies in that the space of Gaussians is not a linear space but a Riemannian manifold. We show, for the first time to our knowledge, that the space of Gaussians can be equipped with a Lie group structure by defining a multiplication operation on this manifold, and that it is isomorphic to a subgroup of the upper triangular matrix group. Furthermore, we propose methods to embed this matrix group in the linear space, which enables us to handle Gaussians with Euclidean operations rather than complicated Riemannian operations. The resulting descriptor, called Local Log-Euclidean Multivariate Gaussian (L^2EMG) descriptor, works well with low-dimensional and high-dimensional raw features. Moreover, our descriptor is a continuous function of features without quantization, which can model the first- and second-order statistics. Extensive experiments were conducted to evaluate thoroughly L^2EMG, and the results showed that L^2EMG is very competitive with state-of-the-art descriptors in image classification.
Date of publication 2017
Code Programming Language MATLAB
Comment

Copyright Researcher 2021