logbin: An R package for relative risk regression using the log-binomial model

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Mark W. Donoghoe, Ian C. Marschner
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract Relative risk regression using a log-link binomial generalized linear model (GLM) is an important tool for the analysis of binary outcomes. However, Fisher scoring, which is the standard method for fitting GLMs in statistical software, may have difficulties in converging to the maximum likelihood estimate due to implicit parameter constraints. logbin is an R package that implements several algorithms for fitting relative risk regression models, allowing stable maximum likelihood estimation while ensuring the required parameter constraints are obeyed. We describe the logbin package and examine its stability and speed for different computational algorithms. We also describe how the package may be used to include flexible semi-parametric terms in relative risk regression models.
Date of publication 2018
Code Programming Language R

Copyright Researcher 2021