Long-term Temporal Convolutions for Action Recognition

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Ivan Laptev, Gül Varol, Cordelia Schmid
Journal/Conference Name IEEE Transactions on Pattern Analysis and Machine Intelligence
Paper Category
Paper Abstract Typical human actions last several seconds and exhibit characteristic spatio-temporal structure. Recent methods attempt to capture this structure and learn action representations with convolutional neural networks. Such representations, however, are typically learned at the level of a few video frames failing to model actions at their full temporal extent. In this work we learn video representations using neural networks with long-term temporal convolutions (LTC). We demonstrate that LTC-CNN models with increased temporal extents improve the accuracy of action recognition. We also study the impact of different low-level representations, such as raw values of video pixels and optical flow vector fields and demonstrate the importance of high-quality optical flow estimation for learning accurate action models. We report state-of-the-art results on two challenging benchmarks for human action recognition UCF101 (92.7%) and HMDB51 (67.2%).
Date of publication 2016
Code Programming Language Lua
Comment

Copyright Researcher 2022