Mean and Variance Modeling of Under- and Overdispersed Count Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors David W Smith, Malcolm J. Faddy
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract This article describes the R package CountsEPPM and its use in determining maximum likelihood estimates of the parameters of extended Poisson process models. These provide a Poisson process based family of flexible models that can handle both underdispersion and overdispersion in observed count data, with the negative binomial and Poisson distributions being special cases. Within CountsEPPM models with mean and variance related to covariates are constructed to match a generalized linear model formulation. Use of the package is illustrated by application to several published datasets.
Date of publication 2016
Code Programming Language R
Comment

Copyright Researcher 2022