Mean and Variance Modeling of Under-Dispersed and Over-Dispersed Grouped Binary Data

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Authors Douglas M. Smith, Malcolm J. Faddy
Journal/Conference Name Journal of Statistical Software
Paper Category
Paper Abstract This article describes the R package BinaryEPPM and its use in determining maximum likelihood estimates of the parameters of extended Poisson process models for grouped binary data. These provide a Poisson process family of flexible models that can handle unlimited under-dispersion but limited over-dispersion in such data, with the binomial distribution being a special case. Within BinaryEPPM, models with the mean and variance related to covariates are constructed to match a generalized linear model formulation. Combining such under-dispersed models with standard over-dispersed models such as the beta binomial distribution provides a very general form of residual distribution for modeling grouped binary data. Use of the package is illustrated by application to several data-sets.
Date of publication 2019
Code Programming Language R
Comment

Copyright Researcher 2021