Mining Inter-Video Proposal Relations for Video Object Detection

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors Mingfei Han, Xiaojun Chang, Yali Wang, Yu Qiao
Journal/Conference Name ECCV 2020 8
Paper Category
Paper Abstract Recent studies have shown that, context aggregating information from proposals in different frames can clearly enhance the performance of video object detection. However, these approaches mainly exploit the intra-proposal relation within single video, while ignoring the intra-proposal relation among different videos, which can provide important discriminative cues for recognizing confusing objects. To address the limitation, we propose a novel Inter-Video Proposal Relation module. Based on a concise multi-level triplet selection scheme, this module can learn effective object representations via modeling relations of hard proposals among different videos. Moreover, we design a Hierarchical Video Relation Network (HVR-Net), by integrating intra-video and inter-video proposal relations in a hierarchical fashion. This design can progressively exploit both intra and inter contexts to boost video object detection. We examine our method on the large-scale video object detection benchmark, i.e., ImageNet VID, where HVR-Net achieves the SOTA results. Codes and models will be released afterwards.
Date of publication 2020
Code Programming Language Unspecified
Comment

Copyright Researcher 2022