Mixed effects: a unifying framework for statistical modelling in fisheries biology.

View Researcher's Other Codes

Disclaimer: The provided code links for this paper are external links. Science Nest has no responsibility for the accuracy, legality or content of these links. Also, by downloading this code(s), you agree to comply with the terms of use as set out by the author(s) of the code(s).

Please contact us in case of a broken link from here

Authors James T. Thorson, Cóilín Minto
Journal/Conference Name ICES Journal of Marine Science
Paper Category
Paper Abstract Fisheries biology encompasses a tremendous diversity of research questions, methods, and models. Many sub-fields use observational or experimental data to make inference about biological characteristics that are not directly observed (called “latent states”), such as heritability of phenotypic traits, habitat suitability, and population densities to name a few. Latent states will generally cause model residuals to be correlated, violating the assumption of statistical independence made in many statistical modelling approaches. In this exposition, we argue that mixed-effect modelling (i) is an important and generic solution to non-independence caused by latent states; (ii) provides a unifying framework for disparate statistical methods such as time-series, spatial, and individual-based models; and (iii) is increasingly practical to implement and customize for problem-specific models. We proceed by summarizing the distinctions between fixed and random effects, reviewing a generic approach for parameter estimation, and distinguishing general categories of non-linear mixed-effect models. We then provide four worked examples, including state-space, spatial, individual-level variability, and quantitative genetics applications (with working code for each), while providing comparison with conventional fixed-effect implementations. We conclude by summarizing directions for future research in this important framework for modelling and statistical analysis in fisheries biology.
Date of publication 2014
Code Programming Language R

Copyright Researcher 2022